An Optical Science Encouragement Kit for School and Community Outreach

3M Visiting Wizards

Μ U S E U M

A Little Bit About 3M Visiting Wizards and its Partnership with The Bakken

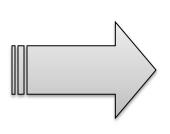
3M Visiting Wizards

3M sponsored science outreach program since 1985 wherein trained "Wizards" check out and present kits in classrooms

29 self-contained kits that demonstrate that "Science is Fun"

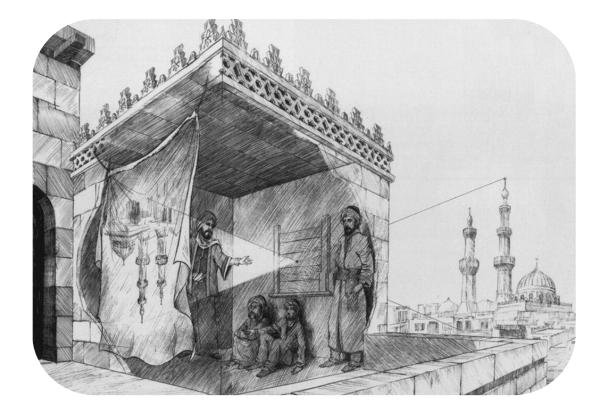
The Bakken partnership began in 2010 in order to:

Bring educators and scientists together Apply education principles to kit design Simplify lessons Develop uniform kit design and documentation


The Strengths of the Partnership

3M Visiting Wizards

Science and Engineering Expertise Science Outreach Programs Pool of Volunteer Scientists Cutting Edge Technology



Pedagogy Expertise Understanding of Teacher Needs Knowledge of Standards Internal Education Programs

Camera Obscura as a Visiting Wizards Kit

Optical device used by philosophers, artists, and scientists since Alhazen (ca. 1000 CE)

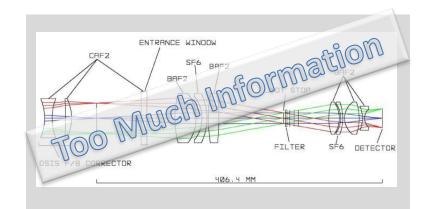
Illustrates image inversion, projection, and aperture effects

Canaletto

Return of the Bucentoro to the Molo on Ascension Day, 1732

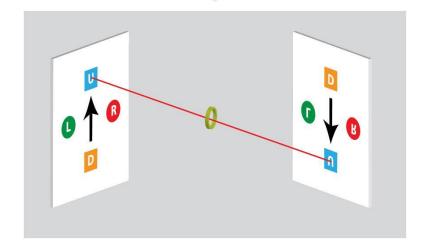
Overcoming Challenges of the Original Kit

Area of Concern	Challenge	Desired Changes
Overall Design	Bulky, heavy, complicated	Simple, robust Portable, easy to set up and use
	Rarely checked out by Wizards	
Lighting	Big, heavy, halogen work lights which get very hot	Cool, compact, efficient, low-power light source
Illuminating Objects	Reflecting enough light to produce a viewable image	Bright image on the screen
Aperture and Lens Assembly	Manual aperture changes	Turret aperture holder for easy aperture changes
Ancillary Learning Tools	Difficulty explaining image inversion	Provide a more concrete understanding of why the image is inverted

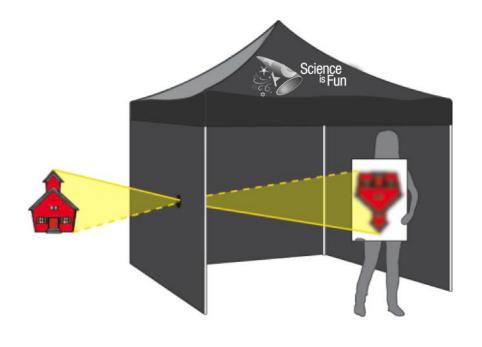

Conclusions

- 3M and The Bakken Museum collaborated on revisions to a science encouragement kit
- The two parties brought together complementary aspects of science, education, and design
- The kit was completely reengineered
- The new kit is:
 - more portable
 - built for a flow-through environment
 - limited to a few concepts (aperture effects, image inversion, focus)
 - fun!

Develop Uniform Kit Design and Documentation


Lesson Plan

- Limit to three concepts
- Eliminate extraneous information
- Avoid "lesson creep"


Documentation

- Standardized
- Organized
- Clean
- Simple

From Concept to Reality

Artist's Sketch

Pop-up Tent Version (only aperture wall shown)

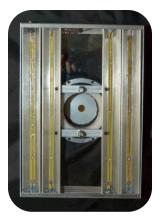
A Look at the Overall Design

Complete Packed Kit

Unpacked Kit

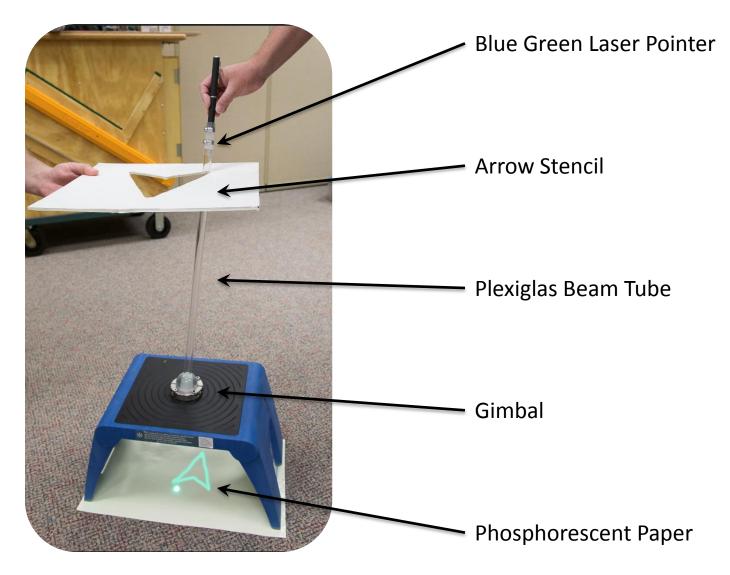
Tent Set Up

Aperture, Lens, and Lighting

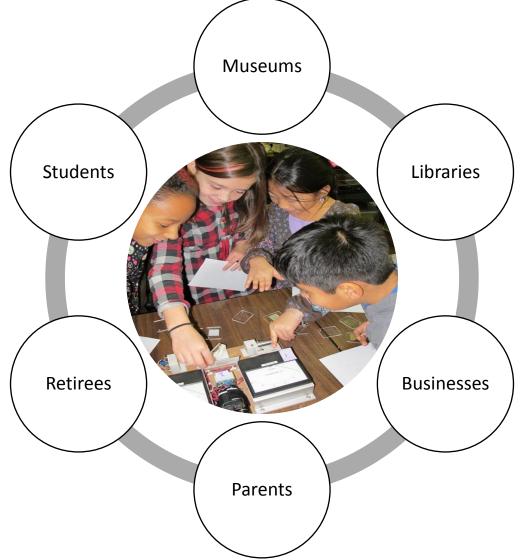

Aperture Assembly

Snap Mount for Aperture Assembly

Three Apertures + Lens



Collimated LED Lighting Mounted on Aperture



Retroreflective Gear

Demonstrating Image Inversion – Hands On

Who Could You Collaborate with in Your Community?

Acknowledgements

Martin Wolk

Justin Spencer

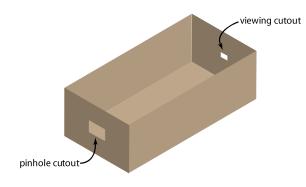
Tim Barrett

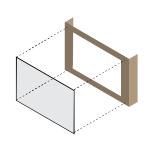
Steve Walvig

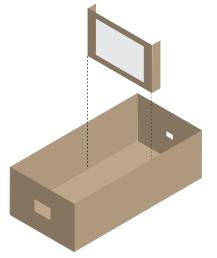
Robert Brott

Lars Smeenk

Mike Meis



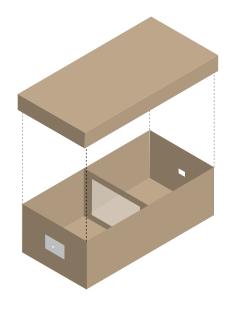

Questions?



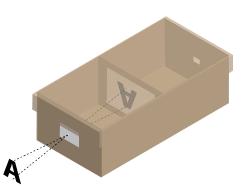
If you think of something later... Justin Spencer – Spencer@thebakken.org

How to Make a Pinhole Viewer




Step 3. Glue screen to box at midpoint

Step 1. Make pinhole and viewing cutouts in opposite end panels of a shoe box


Step 2. Make translucent screen with tracing paper and cardboard frame

Step 4. Glue aluminum foil to pinhole cutout and then make pinhole with a small nail

Step 5. Place cover on box

Step 6. View scene in bright sunlight and observe inverted image on screen

3M Visiting Wizards v1.1 10/02/2009 Martin B. Wolk